
Operating Systems 2016/17
Tutorial-Assignment 6

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marc Rittinghaus

Question 6.1: Interprocess Communication (IPC)
a. How can concurrent activities interact in a (local) system?

Solution:
The two models of IPC are shared memory and message passing. Concurrent activities
can also communicate by other means. Some examples of communication facilities are:

• Shared memory

implicitly: Same address space (e.g., another thread of the same process)
explicitly: Shared memory area (e.g., between processes with different address spaces)

• OS communication facilities (messages (IPC), pipes, sockets)

• High-level abstractions (files, database entries)

b. Why does it make sense to define a timeout for IPC operations?

Solution:
Servers may define a timeout to react to clients which died or maliciously never answer.
These clients would otherwise be hogging resources in the server infinitely.

c. Asynchronous send operations require a buffer for sent but not yet received messages.
Discuss possible locations for this message buffer and evaluate them.

Solution:
Message buffers can be located in the receiver’s address space, in the kernel, or in the
sender’s address space.

receiver AS: The receiver can designate a finite region of its address space as a messa-
ge queue. However, if the number of clients rises, the number of messages sent to
this receiver might increase, thus requiring an ever larger receive area. If the receive
area is not large enough, many IPCs will either fail and be repeated (doubling the
IPC overhead) or block the sender, turning the asynchronous send undesirably into a
synchronous one. Receive buffers do not scale well.

kernel: The kernel can allocate message buffers on demand for each asynchronous mes-
sage that cannot be delivered instantly. However, malicious or bogus threads might
flood the kernel with messages, thus we would need to impose limits on the message
buffer size with consequences similar to the receiver-based buffers.
Kernel-based buffers also scale poorly and can provide opportunities for denial-of-
service attacks if not implemented properly.

sender AS: Keeping the message in the sender’s AS is a viable option. The sender has
stored the to-be-sent message anyways, so we can use its current location as a mes-
sage buffer. If we use the original message memory as message buffer, the application
needs to be notified once the message has been consumed by the receiver so that the
memory can be released or reused.
Alternatively, we might provide a separate sent-message buffer and copy the message
there iff an asynchronous send cannot deliver the message instantaneously. This
approach would allow the application to overwrite the original message memory at
the cost of requiring an (additional) copy of the message.

1



Sender-based buffering scales well, as only the sending processes pay for their com-
munication requirements; applications that seldom communicate with other threads
will never block due to insufficient buffer space.

d. Consider a system that uses synchronous message passing and timeouts to detect/re-
cover from non-responding communication partners. Discuss why the system designers
might choose to provide an atomic send-and-receive system call in addition to separate
send and receive calls.

Solution:
In a common remote procedure call (RPC) scenario, where a client invokes a procedure in
the server, the single send-and-receive scheme requires only one system call invocation for
the client.

More importantly, since the server does not necessarily trust the clients, it will have to
protect itself from malicious or faulty clients by replying to the RPC with a timeout. Other-
wise, (1) the server might block forever, waiting for the client to accept the response and
(2) the server has to buffer the reply message for the whole time, which possibly depletes
server resources (remember we concluded in the previous question that we want to use
sender-based buffering–for the reply the server is the sender).

Now, if the server knows that there is an atomic send-and-receive system call available to
the client, it can assume that a correctly behaving client used this call and will as such be
instantly waiting to receive the server’s reply. The server can therefore specify a 0-timeout
for the reply.

This both removes the risk of denial-of-service attacks against the server and relieves the
system and server of the burden to setup timeouts and buffer the reply message.

Question 6.2: Emulation using IPC
a. How can you perform asynchronous interprocess communication if your operating sys-

tem only provides synchronous IPC mechanisms?

Solution:

The idea is to use a separate proxy thread for delivering the asynchronous message via
synchronous IPC. If the receiver is not waiting for reception, the proxy will block on the
send operation. In any case, the original thread can continue execution, because it is not
responsible for transmitting the message.

The message may be pending for a long period of time. Therefore, it can be stored in an
intermediate buffer in the sender’s address space, which is managed by the proxy thread.

Sender

Main
Thread Proxy

Thread

Interm.
Buffer Receiver

Main
Thread

Message

malloc

free malloc

...

wait/block

free

send

copy

receive

2



The thread receiving an asynchronous message queries for pending messages. The recei-
ver can potentially block on the proxy thread if no message is to be transmitted.

This scheme requires one proxy thread per outstanding asynchronous message. It is there-
fore a good idea to limit the number of outstanding messages and/or combine the approach
with timeouts to protect against malicious receivers.

b. How can you provide synchronous IPC if your operating system only offers asynchro-
nous IPC mechanisms?

Solution:
Asynchronous IPC includes asynchronous send and non-blocking receive operations. If
you want the sender to stop execution until the receiver has accepted the message, you
could come up with a solution such as:

do {
res = async send (msg, rece iver ) ;

} while ( res != SUCCESS) ;

However, this would keep the sender busy only until the messaging system accepts the
message. However, the sender does not know if the message arrived at the receiver,
already—send does not return status information of the receiver. As a consequence, the
sender would be released too early using the above scheme: after the message system
accepted the message but most likely before the intended receiver got the message.

The correct solution establishes a software protocol. The receiver must acknowledge each
message with a message back to the original sender. Of course, ACK messages must not
be acknowledged to avoid endless message loops. Note that this approach requires bi-
directional communication!

function sync send ( in msg, in rece iver ) {
async send (msg, rece iver ) ;

do { /∗ wait fo r the ACK message ∗/
res = async receive (msg, rece iver ) ;

} while ( ( res != SUCCESS) | | ! isAck (msg ) ) ;
}

function async receive with ack ( out msg, out sender ) {
res = async receive (msg, sender ) ; // receive a ( pending ) message

i f ( ( res == SUCCESS) && ( ! isAck (msg ) ) {
async send ( ”ACK” , sender ) ; // acknowledge reception ( i f any )

}
}

Emulating synchronous receive using asynchronous receive is more intuitive:

function sync receive ( out msg, out sender ) {
do { /∗ wait fo r the message ∗/

res = async receive (msg, sender ) ;
} while ( res != SUCCESS) ;

i f ( ! isAck (msg ) ) {
async send ( ”ACK” , sender ) ; // acknowledge reception

}
}

3



Question 6.3: Pipes
a. Write a C-program for Linux that creates two child processes, ls and less and uses an

ordinary pipe to redirect the standard output of ls to the standard input of less.

Solution:

#define READ END 0
#define WRITE END 1

int main ( void )
{

int pid , pipefd [ 2 ] ;
/∗ Create pipe . Parent has write and read end open∗/
int p = pipe ( pipefd ) ;

i f ( ( pid = fork ( ) ) == 0) {
/∗ f i r s t child , gets write end of pipe ∗/
dup2 ( pipefd [WRITE END] , STDOUT FILENO ) ; // Close stdout and replace

// with write end .
close ( pipefd [WRITE END ] ) ; // One duplicated , one not needed
close ( pipefd [READ END ] ) ;

execlp ( ”/bin/ ls ” , ” ls ” , NULL ) ; // Execute ls , which writes to
// ( replaced ) stdout

} else {
/∗ parent , forks a second chi ld ∗/
i f ( ( pid = fork ( ) ) == 0) {

/∗ second child , gets read end of pipe ∗/
dup2 ( pipefd [READ END] , STDIN FILENO ) ; // Close stdin and replace

// with read end
close ( pipefd [WRITE END ] ) ; // One duplicated , one not needed
close ( pipefd [READ END ] ) ;

execlp ( ”/bin/less ” , ” less ” , NULL ) ; // Execute less , which reads
// from ( replaced ) stdin

} else {
/∗ parent , pipe fds must be closed so that ’ less ’ gets an EOF ∗/
close ( pipefd [READ END ] ) ;
close ( pipefd [WRITE END ] ) ;

/∗ wait fo r both children to ex i t ∗/
wait (NULL ) ;
wait (NULL ) ;

}
}

}

4


